42 research outputs found

    Towards the uniform distribution of null P values on Affymetrix microarrays

    Get PDF
    Estimating the P value from the overall distribution of scores on the microarray can produce P values that are much closer to a uniform distribution

    Dysfunction of the Intestinal Microbiome in Inflammatory Bowel Disease and Treatment

    Get PDF
    Background: The inflammatory bowel diseases (IBD) Crohn's disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status. Results: Firmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohn's disease was notable for increases in virulence and secretion pathways. Conclusions: This inferred functional metagenomic information provides the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis

    Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes

    Get PDF
    Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions

    Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes

    Get PDF
    Background: Obesity and type 2 diabetes (T2D) are linked both with host genetics and with environmental factors, including dysbioses of the gut microbiota. However, it is unclear whether these microbial changes precede disease onset. Twin cohorts present a unique genetically-controlled opportunity to study the relationships between lifestyle factors and the microbiome. In particular, we hypothesized that family-independent changes in microbial composition and metabolic function during the sub-clinical state of T2D could be either causal or early biomarkers of progression. Methods: We collected fecal samples and clinical metadata from 20 monozygotic Korean twins at up to two time points, resulting in 36 stool shotgun metagenomes. While the participants were neither obese nor diabetic, they spanned the entire range of healthy to near-clinical values and thus enabled the study of microbial associations during sub-clinical disease while accounting for genetic background. Results: We found changes both in composition and in function of the sub-clinical gut microbiome, including a decrease in Akkermansia muciniphila suggesting a role prior to the onset of disease, and functional changes reflecting a response to oxidative stress comparable to that previously observed in chronic T2D and inflammatory bowel diseases. Finally, our unique study design allowed us to examine the strain similarity between twins, and we found that twins demonstrate strain-level differences in composition despite species-level similarities. Conclusions: These changes in the microbiome might be used for the early diagnosis of an inflamed gut and T2D prior to clinical onset of the disease and will help to advance toward microbial interventions. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0271-6) contains supplementary material, which is available to authorized users

    Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque

    Get PDF
    SummaryThe gut microbiome is widely studied by fecal sampling, but the extent to which stool reflects the commensal composition at intestinal sites is poorly understood. We investigated this relationship in rhesus macaques by 16S sequencing feces and paired lumenal and mucosal samples from ten sites distal to the jejunum. Stool composition correlated highly with the colonic lumen and mucosa and moderately with the distal small intestine. The mucosal microbiota varied most based on location and was enriched in oxygen-tolerant taxa (e.g., Helicobacter and Treponema), while the lumenal microbiota showed inter-individual variation and obligate anaerobe enrichment (e.g., Firmicutes). This mucosal and lumenal community variability corresponded to functional differences, such as nutrient availability. Additionally, Helicobacter, Faecalibacterium, and Lactobacillus levels in stool were highly predictive of their abundance at most other gut sites. These results quantify the composition and biogeographic relationships between gut microbial communities in macaques and support fecal sampling for translational studies

    Multivariable association discovery in population-scale meta-omics studies.

    Get PDF
    It is challenging to associate features such as human health outcomes, diet, environmental conditions, or other metadata to microbial community measurements, due in part to their quantitative properties. Microbiome multi-omics are typically noisy, sparse (zero-inflated), high-dimensional, extremely non-normal, and often in the form of count or compositional measurements. Here we introduce an optimized combination of novel and established methodology to assess multivariable association of microbial community features with complex metadata in population-scale observational studies. Our approach, MaAsLin 2 (Microbiome Multivariable Associations with Linear Models), uses generalized linear and mixed models to accommodate a wide variety of modern epidemiological studies, including cross-sectional and longitudinal designs, as well as a variety of data types (e.g., counts and relative abundances) with or without covariates and repeated measurements. To construct this method, we conducted a large-scale evaluation of a broad range of scenarios under which straightforward identification of meta-omics associations can be challenging. These simulation studies reveal that MaAsLin 2\u27s linear model preserves statistical power in the presence of repeated measures and multiple covariates, while accounting for the nuances of meta-omics features and controlling false discovery. We also applied MaAsLin 2 to a microbial multi-omics dataset from the Integrative Human Microbiome (HMP2) project which, in addition to reproducing established results, revealed a unique, integrated landscape of inflammatory bowel diseases (IBD) across multiple time points and omics profiles

    The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation

    Get PDF
    Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU-NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces
    corecore